大家好,今天小编关注到一个比较有意思的话题,就是关于什么是卷积神经网络的问题,于是小编就整理了4个相关介绍什么是卷积神经网络的解答,让我们一起看看吧。
卷积神经网络的构成?
卷积神经网络结构:
1、输入层。输入层是整个神经网络的输入,在处理图像的卷积神经网络中,它一般代表了一张图片的像素矩阵。比如在图6-7中,最左侧的三维矩阵的长和宽代表了图像的大小,而三维矩阵的深度代表了图像的色彩通道。比如黑白图片的深度为1,而在RGB色彩模式下,图像的深度为3。
卷积神经网络是一类包含卷积计算且具有深度结构的前馈神经网络,是深度学习的代表算法之一。
卷积神经网络具有表征学习能力,能够按其阶层结构对输入信息进行平移不变分类,因此也被称为平移不变人工神经网络。
卷积神经网络的构成是仿造生物的视知觉机制构建,可以进行监督学习和非监督学习。
其隐含层内的卷积核参数共享和层间连接的稀疏性使得卷积神经网络能够以较小的计算量对格点化特征,例如像素和音频进行学习、有稳定的效果且对数据没有额外的特征工程要求。
深度学习的人工神经网络及卷积神经网络原理是什么?
一、神经网络,也指人工神经网络(Artificial Neural Networks,简称ANNs),是一种模仿生物神经网络行为特征的算法数学模型,由神经元、节点与节点之间的连接(突触)所构成,如下图:
每个神经网络单元抽象出来的数学模型如下,也叫感知器,它接收多个输入(x1,x2,x3...),产生一个输出,这就好比是神经末梢感受各种外部环境的变化(外部***),然后产生电信号,以便于转导到神经细胞(又叫神经元)。
单个的感知器就构成了一个简单的模型,但在现实世界中,实际的决策模型则要复杂得多,往往是由多个感知器组成的多层网络,如下图所示,这也是经典的神经网络模型,由输入层、隐含层、输出层构成。
人工神经网络可以映射任意复杂的非线性关系,具有很强的鲁棒性、记忆能力、自学习等能力,在分类、预测、模式识别等方面有着广泛的应用。
卷积神经网络十大算法?
1. 目前常用的卷积神经网络算法有很多,但是没有明确的十大算法排名。
2. 这是因为卷积神经网络的发展非常迅速,每年都会有新的算法被提出和改进,而且不同的算法在不同的任务和数据集上表现也会有所差异。
3. 一些常见的卷积神经网络算法包括LeNet-5、AlexNet、VGGNet、GoogLeNet、ResNet等,这些算法在图像分类、目标检测、语义分割等领域取得了很好的效果。
此外,还有一些针对特定任务或特殊结构的算法,如YOLO、FCN、U-Net等,它们在相应的领域也有很高的应用价值。
总的来说,卷积神经网络算法的发展为计算机视觉和深度学习领域带来了巨大的进步和突破。
神经网络是什么?
人工神经网络(ANNs)或连接系统是计算系统,其模糊地受到构成动物脑的生物神经网络的启发。这些系统通过考虑实例“学习”(即逐步提高性能),通常没有特定于任务的编程。例如,在图像识别中,他们可能会通过分析手动标记为“猫”或“无猫”的示例图像并使用结果识别其他图像中的猫来识别包含猫的图像。他们没有任何先验知识就这样做关于猫,例如,他们有毛皮,尾巴,胡须和猫般的面孔。相反,他们从他们处理的学习资料中演变出自己的一套相关特征。
人工神经网络基于一组称为人造神经元(在动物脑中的生物神经元的简化版本)的连接单元或节点。人造神经元之间的每个连接(简化版本的突触)可以将信号从一个传输到另一个。接收信号的人工神经元可以处理它,然后发出信号传递与之相连的人造神经元。
在常见的ANN实现中,人造神经元之间的连接处的信号是实数,并且每个人造神经元的输出通过其输入之和的非线性函数来计算。人工神经元和连接通常具有随着学习进行而调整的权重。重量增加或减少连接处信号的强度。人造神经元可能有一个阈值,只有当汇总信号超过该阈值时才会发送信号。通常,人造神经元是分层组织的。不同的层可能会对其输入执行不同类型的转换。信号从第一个(输入)到最后一个(输出)层传播,可能在多次穿越层之后。
ANN方法的最初目标是以与人类大脑相同的方式解决问题。然而,随着时间的推移,注意力集中在匹配具体任务上,导致生物学的偏差。人工神经网络已用于各种任务,包括计算机视觉,语音识别,机器翻译,社交网络过滤,游戏板和视频游戏以及医疗诊断。
了解更多硅谷前沿深度讯息请看 硅发布 微信公众号。
下面我们来点通俗易懂的几个概念。如果想系统性学习,建议买一些相关的书籍看一看。
神经网络技术是机器学习下属的一个概念,本质上是从信息处理的角度对人脑神经元网络进行抽象模拟,从而建立计算模型。
基于神经连接的计算模型在上世纪40年代开始受到重视,大量的训练数据(包括图像、***和语音)成功的实现了数据分析。在深度学习发展之前,神经网络通常只有3到5层,和几十个神经元/节点;深度学习之后,神经网络扩展到7到10层,甚至更多层,模拟神经元数目增至百万量级,从而面向更为复杂的问题实现更为可靠的处理。当下兴起的人工智能,主要就是大规模的深度学习。
具体来看,神经网络有三类主要形式:
1.1 前馈神经网络
前馈神经网络(Feed forward neural networks)是最常见的人工神经网络。在这种结构下,信息只向一个[_a***_](向前)移动,即从输入层经过“隐藏层”到输出层,没有循环网络。首个单节神经网络在1958年提出,经过计算能力和训练算法的***展,前馈神经网络展现出了更高的性能水平。
1.2 循环神经网络
循环神经网络(Recurrent neural networks)指结构中包含节点定向连接成环(loops)的人工神经网络,非常适合于处理(手写、文本、语音形式的)任意时序的输入序列。2016年11月,牛津研究报告显示,基于神经网络(和卷积神经网络)的系统在唇语识别应用中实现了95%的准确率(有经验的人类唇语者准确率近52%)。
1.3 卷积神经网络
卷积神经网络(Convolutional neural networks)是一种深度前馈人工神经网络,其逻辑结构受动物视觉大脑皮层的启发,对于大型图像处理(视觉感知任务)有出色表现。
神经网络是深度学习中的一种算法数学模型,是模仿动物神经网络行为特征而建造的。神经网络由很多层构成,每层都有很多神经元,每一层都可以从数据中分析学习,最后这些层的输出结果就是预测结果。神经元是一个简单的数学函数。每个神经元的输出会作为输入传递给神经网络下一层中的神经元。单个神经元模型结构如下图:
神经网络旨在通过构建多层次(输入层、隐层、输出层)的机器学习模型和海量训练数据来学习更有用的特征,能够构建复杂的人工智能模型,从而模拟人脑解决人工智能问题。2006年Hinton等人提出“深度学习”神经网络以后,人工智能在技术上经过5-8年的沉淀后获得突破性进展,自2012年以来,以“卷积神经网络(CNNs)”和“递归神经网络(RNN)”为主的深度学习模型使得复杂任务分类准确率大幅提高,相比其他算法效果和效率改善显著,从而推动了以图像处理、语音识别以及语义理解技术为核心的人工智能的的快速发展。
神经网络的目标旨在用简单的独立结构构建出复杂的数学模型。在单独的节点和节点之间是简单的线性模型,而当层数变多,节点数变多的时候,整个模型构建出了非线性的特征,具有强大的数学模型效果,通过数据学习出适合特定数据的网络参数,从而适应极为复杂的现实情况。深度学习用通俗的说法来看,就是层数较多的神经网络。最基础的神经网络模型是前馈神经网络,这是最基础的模型,其他的神经网络结构的逻辑结构和训练方式都基于这个模型。神经网络模型可以看作是一个黑箱子,外部很多观测到的特征,这些特征按照模型要求作为输入节点,数据在这些节点中按照自己的特征输入,这个模型的目的是通过一个较为复杂的结构得到目标值。其实不用把神经网络想得有多么高深,其实中间的每个节点的连接只是最简单的线性方程。我用通俗的方式打个比方,如果我们把一个人的特征进行数学表达,然后判断他是什么性别,我们用神经网络可以这样来表示,中间的黑箱就是神经网络:
这个黑箱过程是一个很复杂的结构,这些结构就是所谓的隐层节点,隐层节点相互之间连接是通过线性结构连接的,他们可以是一层也可以是多层,每一层的节点数可以是任意的,当调整好结构之后,数据就可以根据训练数据学习出特定的模型,这个模型中隐含了数据的模式,在未来遇到不曾遇到的数据之后这些数据就会通过学习到的结构得出想要解决的目标。在这里,对输入端特征的选取和把目标问题转化成模型的输出是需要去尝试的,当可以将实际问题转化成神经网络能够处理的问题之后,隐层结构的构建也是需要经验的。
神经网络最重要的几个概念就是前向反馈,反向反馈,权重更新,具体来说我可以用单层神经网络的训练过程做一个解释。
我们给定了样本的输入值x,样本的输出值y,神经网络的权重w,这个单层的神经网络可以表现为如下形式:
我们在神经网络中的每一个步骤都有一个权重w,那利用这组输出权重与我们的样本输出值会形成一个误差值
我们现在要做的是,根据这个误差来自动调整我们的权重,并且权重变化方向是收敛结果走的,这里我们用了梯度下降方法。
首先要搞清楚的是神经网络是一种模型,也可以理解为是一种技术,是顺应时代发展而产生的一种技术(或模型)。我们目前所处的时代是互联网信息时代,也就是说,随着互联网的发展,大量的信息数据日益增长,在这个背景之下,我们可以有大量的数据来训练神经网络了,逐渐取代了之前的传统的机器学习方法或者基于规则的方法。也就是说明了,神经网络是一种数据驱动的技术,它的训练是依赖于大量数据的,如果你没有可用来训练模型的大量数据,与其使用神经网络模型还不如使用传统的机器学习模型。
其实,神经网络很早很早之前就被提出了,只不过当时没有如今这么多数据的支持,导致其性能不好,所以被没落了,机器学习技术反而在当时比较盛行,而如今,时代变了,正所谓三十年河东,三十年河西,神经网络终于成了如今计算机领域的霸主。
神经网络的一大好处就是,省去了传统机器学习方法中繁琐而敏感的人工特征设计(即特征工程)这一过程,完全靠计算机通过各种神经网络结构,以及喂给它大量的数据,自行学习特征(至于它学到了哪些特征,我们是不清楚的,这就是我们常说的,神经网络是一种黑盒技术,反正我们根据模型的结果,知道它学到了某些特征)。
其实,神经网络的原理就是模仿人类的大脑的神经元的学习过程。每当我看到神经网络这个名词,我就会想到小婴儿,把还没训练前的神经网络比作新生儿,神经网络的训练过程,类似于每天给小baby不停的重复“爸爸”“妈妈”,经过一段时间的训练,它就学会了,看到妈妈的时候,会喊妈妈,看到爸爸的时候,喊爸爸,至于小宝宝到底是怎么学会的,你也不是特别清楚,反正你会,“哇哦,好神奇”。当然也会有出错的时候,没有任何一个模型会百分之百的正确。
在现实的应用中,你会根据不同的任务设置,选择不同的神经网络结构,比如CNN,RNN,LSTM.所有的神经网络结构都是来自于任务的需要。而且会随着时间随着科技的进步,神经网络结构越来越高能。
到此,以上就是小编对于什么是卷积神经网络的问题就介绍到这了,希望介绍关于什么是卷积神经网络的4点解答对大家有用。